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Konigsberg	seven-bridge	problem.	It	has	been	more	than	two	hundred	years	till	now.	Graph	Theory	is	the	core	content	of	Discrete	Mathematics,	and	Discrete	Mathematics	is	the	theoretical	basis	of	Computer	Science	and	Network	Information	Science.	This	book	vulgarly	introduces	in	an	elementary	way	some	basic	knowledge	and	the	primary	methods
in	Graph	Theory.	Through	some	interesting	mathematic	problems	and	games	the	authors	expand	the	knowledge	of	Middle	School	Students	and	improve	their	skills	in	analyzing	problems	and	solving	problems.	vii	This	page	intentionally	left	blank	Contents	Introduction	Vii	Chapter	1	Definition	of	Graph	1	Chapter	2	Degree	of	a	Vertex	13	Chapter	3
Turin's	Theorem	24	Chapter	4	Tree	40	Chapter	5	Euler's	Problem	51	Chapter	6	Hamilton's	Problem	63	Chapter	7	Planar	Graph	75	Chapter	8	Ramsey's	Problem	84	Chapter	9	Tournament	101	Solutions	110	Index	145	ix	This	page	intentionally	left	blank	Chapter	1	Definition	of	Graph	~	~	-	.::.~-->	Graph	theory	is	a	branch	of	mathematics	on	the	study	of
graphs.	The	graph	we	consider	here	consists	of	a	set	of	points	together	with	lines	joining	certain	pairs	of	these	points.	The	graph	represents	a	set	that	has	binary	relationship.	In	recent	years,	graph	theory	has	experienced	an	explosive	growth	and	has	generated	extensive	applications	in	many	fields	.	We	often	encounter	the	following	phenomena	or
problems:	In	a	group	of	people,	some	of	them	know	each	other,	but	others	do	not.	There	are	some	cities.	Some	pairs	of	them	are	connected	by	airlines	and	others	are	not.	There	is	a	set	of	points	in	the	plane.	The	distance	between	some	of	them	is	one	and	others	are	not	one.	All	the	above	phenomena	or	problems	contain	two	aspects:	one	IS	object,	such
as	people,	football	teams,	cities,	points	and	so	on;	and	the	other	is	a	certain	relationship	between	these	objects,	such	as	"knowing	each	other",	"having	a	contest",	"the	distance	between"	and	so	on.	In	order	to	represent	these	objects	and	the	relationships,	we	could	use	a	point	as	an	object,	which	is	called	a	vertex.	If	any	two	objects	have	a	relationship,
then	there	is	a	line	joining	them,	which	is	called	an	edge.	Then	we	have	constructed	a	graph.	We	call	the	figure	a	graph	a)	•	For	instance,	the	three	graphs	G	1	,	a)	The	general	definition	of	graphs:	a	graph	is	a	triplet	(V,	E,	.p),	where	V	and	E	are	two	disjoint	sets,	V	is	nonempty	and.p	is	a	mapping	from	V	x	V	to	E.	The	sets	V,	E	,	.p	are	vertex	set,	edge
set	and	incidence	function,	respectively	.	Graph	Theory	2	G	2	,	G	3	in	Fig.	1.	1	are	isomorphic,	which	contain	some	vertices	and	edges	joining	them,	representing	some	objects	and	the	relationships	between	them.	Fig.	1.	1	shows	three	graphs	G	1	,	G	2	,	G	3	,	where	vertices	are	represented	by	small	circles.	~~l	A	v,	v,	G,	v;	v]	G,	G,	Fig.	1.	1	We	can	see
that	in	the	definition	of	graphs	there	are	no	requirement	on	the	location	of	the	vertices,	the	length	and	the	curvature	of	the	edges,	and	the	fact	whether	the	vertices	and	the	edges	are	in	the	same	plane	or	not.	However,	we	do	not	allow	an	edge	passing	through	the	third	vertex	and	also	not	let	an	edge	intersect	itself.	In	graph	theory,	if	there	is	a
bijection	from	the	vertices	of	G	to	the	vertices	of	G'	such	that	the	number	of	edges	joining	v	i	and	v	j	equals	the	number	of	edges	joining	v/	and	v/'	then	two	graphs	G	and	G'	are	isomorphic	and	considered	as	the	same	graph.	A	graphG'	=	(V',	E')	is	called	a	subgraph	of	a	graphG	=	(V,	E)	if	V'	c	V,	E'	c	E,	that	is,	all	the	vertices	of	G'	are	the	vertices	of	G
and	the	edges	of	G'	are	the	edges	of	G.	For	instance,	the	graphs	G	1	,	G	2	in	Fig.	1.	2	are	the	subgraphs	of	G.	G	G,	Fig.	1.	2	G,	Definition	of	Graph	3	If	there	is	an	edge	joining	v	i	and	v	j	in	graph	G,	then	v	i	and	v	j	are	adjacent.	Otherwise,	they	are	nonadjacent.	If	the	vertex	v	is	an	end	of	the	edge	e,	then	v	is	incident	to	e.	In	Fig.	1.3,	adjacent,	but	vertex
V3	V2	and	V4	are	not.	The	Vl	and	V2	are	e,	is	incident	to	the	edge	e	4	•	We	called	the	edge	a	loop	if	there	is	v,	e,	an	edge	joining	the	vertex	and	itself.	For	instance	,	the	edge	e6	v,	in	Fig.	1.3	is	a	e,	Fig.	1.	3	loop.	Two	or	more	edges	with	the	same	pair	of	ends	are	called	parallel	edges.	For	instance,	the	edges	G1	,	in	Fig.	1.	3	are	parallel	edges.	A	graph
is	simple	if	it	has	no	loops	or	parallel	edges.	The	graphs	G	2	,	G	3	in	Fig.	1.	1	are	simple,	whereas	the	graph	in	Fig	.	1.3	is	e1	,	e2	not.	In	a	simple	graph,	the	edge	joining	v	i	and	v	j	is	denoted	by	(v	i	'	V	j)	.	Certainly,	(v	i'	V	j)	and	(v	j	'	Vi)	are	considered	as	the	same	edge.	A	complete	graph	is	a	simple	graph	in	which	any	two	vertices	are	adjacent.	We
denote	the	complete	graph	with	n	vertices	by	K	n.	The	graphs	K	3	,	K	4'	K	5	in	Fig.	1.4	are	all	complete	graphs.	The	number	of	edges	of	the	complete	graph	K"	is	G)	=	~	n	(n	-	1).	K,	Fig.	1.	4	A	graph	is	finite	if	both	the	number	of	the	vertices	IV	I	(	IV	I	is	also	said	to	be	the	order	of	G)	and	the	number	of	edges	IE	I	are	finite.	A	graph	is	infinite	if	IV	I	or	IE
I	is	infinite.	In	this	chapter,	unless	specified,	all	graphs	under	discussion	should	be	taken	to	be	finite	simple	graphs.	Graph	Theory	4	These	fundamental	concepts	mentioned	above	help	us	to	consider	and	solve	some	questions	.	Example	1	There	are	605	people	in	a	party.	Suppose	that	each	of	them	shakes	hands	with	at	least	one	person.	Prove	that
there	must	be	someone	who	shakes	hands	with	at	least	two	persons.	Proof	We	denote	the	605	people	by	605	vertices	V605	'	VI'	V2'	...	,	If	any	two	of	them	shake	hands,	then	there	is	an	edge	joining	the	corresponding	vertices.	In	this	example	we	are	going	to	prove	that	there	must	be	someone	who	shakes	hands	with	at	least	two	persons.	Otherwise,
each	of	them	shakes	hands	with	at	most	one	person.	Moreover,	according	to	the	hypothesis	each	of	them	shakes	hands	with	at	least	one	person	.	Thus	we	have	each	of	them	just	shakes	hands	with	one	person.	It	implies	that	the	graph	G	consists	of	several	figures	that	every	two	vertices	are	joined	by	only	one	edge	.	Suppose	that	G	have	r	edges	.	So	G
has	2r	(even)	vertices.	It	contradicts	the	fact	that	the	number	of	vertices	of	G	is	605	(odd).	We	complete	the	proof.	Fig.	1.	5	Example	2	Is	it	possible	to	change	the	state	in	Fig.	1.	6	to	the	state	in	Fig.	1.	7	by	moving	the	knights	several	times?	(In	the	figures	,	W	stands	for	white	knight,	and	B	stands	for	black	knight	.	knight	should	be	moved	by	following
the	international	chess	regulation)	Solution	As	Fig.	1.	8	shows,	the	nine	squares	are	numbered	and	each	of	them	is	represented	by	a	vertex	in	the	plane.	If	the	knight	can	be	moved	from	one	square	to	anther	square	,	then	there	is	an	edge	joining	the	two	corresponding	vertices,	as	Fig	.	1.	9	shows.	~~	~~	Fig.	1.	6	Fig.	1.	7	I	4	7	2	5	8	3	6	9	Fig.	1.	8
Definition	of	Graph	'0	0	I	W	8	9	3	5.	8	3	Fig.	1.	9	0	I	W	.	B	9	B	4	5	5.	8	4	2	W	9	B	3	Fig.	1.	10	4	Fig.	1.11	Thus	the	beginning	state	in	Fig.	1.	6	and	the	state	in	Fig.	1.	7	are	represented	by	the	two	graphs	as	in	Fig.	1.	10,	Fig	.	1.	11,	respectively.	Obviously,	the	order	of	the	knight	on	the	circle	cannot	be	changed	from	the	state	that	two	white	knight	are
followed	by	two	white	knight	into	the	state	that	white	knight	and	black	knight	are	interlaced.	So	it	is	impossible	to	change	the	states	as	required.	Example	3	There	are	n	people	A	I	,	A	2	,	.	•	.	,	A	n	taking	part	in	a	mathematics	contest,	where	some	people	know	each	other	and	any	two	people	who	do	not	know	each	other	would	have	common
acquaintance	.	Suppose	that	Al	and	A	2	know	each	other,	but	do	not	have	common	acquaintance.	Prove	that	the	acquaintances	of	Al	are	as	many	as	those	of	A	2	•	Proof	Denote	the	n	people	AI,	A	2	,	.	..	,	An	by	n	vertices	VI'	.	.	.	,	V	n.	If	two	people	know	each	other,	then	there	is	an	edge	joining	the	two	corresponding	vertices.	Then	we	get	a	simple	graph
G.	V2'	The	vertices	of	G	satisfy	that	any	two	nonadjacent	vertices	have	a	common	neighbor.	We	shall	prove	two	adjacent	vertices	VI	and	V2	have	the	same	number	of	neighbors.	The	set	of	neighbors	of	the	vertex	set	of	neighbors	of	the	vertex	N	(	V2	).	If	there	is	a	vertex	V2	V	i	VI	is	denoted	by	N	(VI)	and	the	is	denoted	by	in	N	(	VI)	and	then	V	i	is	not	in
N	(V	2	).	Otherwise	and	A2	have	the	common	acquaintance	A	i	.	V	i#-	V	2	'	Al	Thus	v	j	V2	#-	v	and	1.	V	i	So	N	shows.	For	have	a	common	neighbor	(V2)	V	i	'	V	k	contains	v	in	N	j'	(V	I	)'	V	j	,	,	",	\V	'O'-	:	"	N(7J	,)	''''-	"	"	N(	v	,)	-,"	....	---"	Vj	':	and	as	Fig.	1.	12	which	are	v~	VI	Fig.	1.12	"	Graph	Theory	6	distinct	from	V2'	both	of	them	cannot	be	adjacent	to	a
vertex	v	j	in	N	(V2)'	which	is	distinct	from	VI	.	Otherwise,	two	nonadjacent	vertices	V	I	'	V	j	have	three	common	neighbors	V2'	V	i	'	V	k	.	Therefore	v	k	in	N	(VI)'	which	is	distinct	from	v	k	'	must	have	a	neighbor	v	I	in	N	(V2)'	which	is	distinct	from	v	j	.	So	the	number	of	vertices	in	N	(VI)	is	not	greater	than	that	of	N	(V	2	)	.	Similarly	the	number	of	vertices
in	N	(V2)	is	not	greater	than	that	of	N	(VI).	Thus	the	edges	incident	to	VI	are	as	many	as	those	incident	with	V2.	Example	4	Nine	mathematicians	meet	at	an	international	mathematics	conference.	For	any	three	persons	,	at	least	two	of	them	can	have	a	talk	in	the	same	language	.	If	each	mathematician	can	speak	at	most	three	languages,	prove	that	at
least	three	mathematicians	can	have	a	talk	in	the	same	language.	(USAMO	1978)	Denote	the	9	mathematicians	by	9	vertices	VI'	V2'	..	.	,	If	two	of	them	can	have	a	talk	in	the	ith	language,	then	there	is	an	Proof	V9.	edge	joining	the	corresponding	vertices	and	color	them	with	the	i	th	color.	Then	we	get	a	simple	graph	with	9	vertices	and	edges	colored.
Every	three	vertices	have	at	least	one	edge	joining	them	and	the	edges	incident	to	a	vertex	are	colored	in	at	most	three	different	colors	.	Prove	that	there	are	three	vertices	in	graph	G,	any	two	of	which	are	adjacent	to	the	three	edges	colored	with	the	same	color.	(This	triangle	is	called	monochromatic	triangle.	)	have	the	i	th	color,	then	the	vertices	v	j
,	V	k	are	adjacent	and	edge	(v	j	,	V	k)	has	the	i	th	color.	Thus	for	vertex	VI	,	there	are	two	cases	:	(1)	The	vertex	V	I	is	adjacent	to	V	2	'	.	.	.	,	V	9.	By	the	pigeonhole	principle,	at	least	two	edges,	without	loss	of	generality,	denoted	by	If	the	edges	(v	i	'	V	j	)	,	(v	i	'	V	k	)	have	the	same	color.	Thus	triangle	monochromatic	triangle	.	(VI'	V2),	(VI'	V	3	)	'	D	V	I
V2V	3	is	a	(2)	The	vertex	VI	is	nonadjacent	to	at	least	one	of	V	2'	.	.	.	,	V	9.	Without	loss	of	generality,	we	suppose	that	VI	is	nonadjacent	to	V	2	.	For	every	three	vertices	there	is	at	least	one	edge	joining	them,	so	there	are	at	least	seven	edges	from	vertices	V3	'	V4'	.	..	,	V9	to	the	Definition	of	Graph	'Vertex	VI	or	7	From	that	we	know	at	least	four	V2.
vertices	of	V3'	V4'	.	.	.	,	V9	are	adjacent	with	vertex	VI	or	V2'	Without	loss	of	generality,	we	suppose	that	V3,	V4'	vs,	V6	are	adjacent	to	VI'	as	it	is	shown	in	Fig.	1.	13.	Thus	there	must	be	two	v,o	edges	of	(VI'	V3)'	(VI'	V4)'	(VI'	vs),	(VI'	V6)	which	have	the	same	color.	Suppose	(VI'	V3),	(VI'	V4)	Fig.	I.	13	have	the	same	color,	then	DVIV3V4	is	a
monochromatic	triangle	.	Remark	If	the	number	9	in	the	question	is	replaced	by	8,	then	the	proposition	is	not	true.	Fig.	1.	14	gives	a	counterexample.	Denote	the	8	vertices	by	VI'	V2'	.	.	.	,	V8	and	12	colors	by	1,	2,	...	,	12,	and	there	is	no	monochromatic	triangle	in	the	graph.	~.	I~~I	v,	2	7~:~:~~J	v,	v,	8	v,	Fig.	1.	14	The	following	example	is	the	third
question	of	national	semor	middle	school	mathematics	contest	in	2000.	Example	5	There	are	n	people,	any	two	of	whom	have	a	talk	by	telephone	at	most	once.	Any	n	-	2	of	them	have	a	talk	by	telephone	3	m	times,	where	m	is	a	natural	number.	Determine	the	value	of	n.	(China	Mathematical	Competition)	Solution	Obviously	n	;;?	5.	Denote	the	n
persons	by	the	vertices	AI,	A	2	,	•••	,	An.	If	A	i	'	Aj	have	a	talk	by	telephone,	then	there	is	an	edge	(A	i	,	A	j	).	Thus	there	is	an	edge	joining	two	of	the	n	vertices.	Without	loss	of	generality,	we	suppose	that	it	is	(A	I	,A	2	)	.	Suppose	there	is	no	edge	joining	A	I	and	A	3	•	Consider	n	-	2	vertices	AI,	A	4	,	A	s	,	...	,	An;	A	2	,	A	4	,	As,	.	..	,	An	and	A	3	,	A	4,
Graph	Theory	8	As,	...	,	A	n.	We	know	the	number	of	edges	joining	any	of	A	I	'	A	2	A3	to	all	of	A	4	,	Add	A2	to	the	set	AI,	A	4	,	As,	...	,	An'	then	there	are	S	k	,	As,	...	,	An	is	equal	and	we	denote	it	by	k	.	+	1	edges	joining	the	n	=	3m	+	-	1	vertices.	Take	away	any	vertex	from	n	-1	vertices,	the	number	of	edges	joining	the	remaining	n	-	2	vertices	is	always	3
m	+	So	there	are	k	•	1	edges	joining	every	vertex	and	the	remaining	n	-	2	vertices.	Therefore,	S	;	(n	=	-	1)(k	+1).	Similarly,	add	A	3	to	the	set	AI,	A	4	,	As,	...	,	An.	We	get	n	-1	vertices	and	the	number	of	edges	is	t	=	3	m	For	S	that	is	n	=	=	t	+	1,	+k	=	21	(n	-	1	)	k.	we	have	3.	A	contradiction.	Thus	there	is	an	edge	joining	AI,	A	3.	Similarly,	there	is	also
an	edge	joining	A2	and	A	3.	Moreover,	there	must	be	edges	joining	AI,	A2	and	allAi(i	=	3,4,	...	,	n).	For	Ai,	Aj	(i	"#-	j),	there	is	an	edge	joining	A	i	and	AI'	So	there	is	an	edge	joining	Ai	and	A	j	Hence	we	have	n	Example	6	=	•	Thus	it	is	a	complete	graph.	Therefore,	5.	There	are	n	(n	>	3)	persons.	Some	of	them	know	each	other	and	others	do	not.	At	least
one	of	them	does	not	know	the	others.	What	is	the	largest	value	of	the	number	of	persons	who	know	the	others?	Construct	the	graph	G:	denote	the	n	persons	by	n	vertices	and	two	vertices	are	adjacent	if	and	only	if	the	two	corresponding	persons	know	each	other.	Solution	For	at	least	one	of	them	does	not	know	the	others,	in	graph	G	there	are	at	least
two	vertices	which	are	not	adjacent.	Suppose	that	Definition	of	Graph	9	there	is	no	edge	e	=	(v	1	,	V	2)	joining	VI'	V2.	Thus	G	must	be	K	n	-	e	if	it	has	the	most	edges.	That	is	the	graph	taken	away	an	edge	e	from	the	complete	graph	K	n.	The	largest	number	of	vertices	which	is	adjacent	with	the	remaining	vertices	is	n	-	2.	So	the	largest	number	of
people	who	know	the	others	is	n	-	2.	The	following	example	is	from	the	29th	International	Mathematical	Olympiad	(1988).	Suppose	that	Example	7	n	is	a	positive	integer	and	A	I	,	A	2	,	•••	,	A	2n	+	1	is	a	subset	of	a	set	B.	Suppose	that	(1)	each	Ai	has	exactly	2n	elements;	(2)	each	A	i	n	Aj	(1	~	i	2),	if	a	convex	n-polygon	has	a	subdivision	graph,	such	that
each	vertex	is	an	even	vertex,	then	3	1n.	Now	consider	3k	~	n	<	3	(k	+	1).	Suppose	that	a	convex	n-polygon	A	I	A	2	•	••	An	has	a	subdivision	graph,	such	that	each	vertex	is	an	even	vertex.	It	is	easy	to	see	that	any	subdivision	of	a	convex	n	(n	>	3)	-polygon	can	divide	the	convex	n-polygon	into	n	-	2	small	triangles,	which	have	no	common	interior,	and
at	least	two	of	these	triangles	contain	two	adjacent	edges	of	the	convex	n-polygon	as	two	edges.	Hence	without	loss	of	generality,	let	AlA3	be	a	diagonal	line	of	a	subdivision	graph	of	the	convex	n-polygon	A	I	A	2	•	••	A	n	(as	shown	in	Fig	.	5.13).	So	AlA3	is	still	an	edge	of	another	L~AIA	3	A	i	in	the	subdivision	graph.	By	hypothesis	that	A	I	A	2	•••	An
has	a	subdivision	graph	such	that	each	vertex	is	an	even	vertex,	hence	i	4.	Otherwise,	A	3	is	an	odd	vertex	.	Equally	i	n;	otherwise,	Al	is	an	odd	vertex.	Therefore	4	<	i	<	n.	The	subdivision	"*	"*	graph	of	A	I	A	2	•	••	An	gives	rise	to	subdivision	graphs	of	a	convex	(i	-	2)	-polygon	A	3A4'	"	Ai	and	a	convex	(n	-	i	+2)	-polygon	A	I	A	2	•••	An'	respectively.
Each	vertex	of	the	convex	polygons	corresponding	to	these	two	subdivision	graphs	is	even.	Hence	by	induction,	Fig.	5.	13	3	I	i	-	2,3	I	n	-	i	+	2,	so	3	1n.	Hence	the	necessity	has	been	proved.	The	necessity	also	can	be	proved	by	the	coloring	method.	For	a	subdivision	graph	of	a	convex	n-polygon,	we	can	color	the	divided	triangles	using	two	colors,	such
that	two	triangles	with	a	common	edge	have	different	colors.	Do	as	follows:	draw	diagonal	lines	in	sequence	so	that	each	diagonal	line	divides	the	interior	of	polygon	into	two	parts,	in	one	part	keep	the	original	color,	in	another	part	change	color.	Finally,	we	draw	all	the	diagonal	lines	and	obtain	the	needed	color.	Since	convex	polygon	has	a
subdivision	graph,	which	is	a	cycle	Euler's	Problem	59	drawn	without	lifting	one's	pen,	each	vertex	is	an	even	vertex.	So	the	number	of	triangles	at	each	vertex	is	odd.	In	the	above	coloring	method,	all	the	edges	of	the	polygon	belong	to	the	triangles	with	the	same	color.	Let	it	be	black	(see	Fig	.	5.14).	Denote	the	number	of	edges	of	white	triangles	by
m.	Clearly	3	1m,	each	edge	of	the	white	triangles	is	also	that	of	the	black	triangles	.	However,	all	the	edges	of	the	polygon	are	those	of	the	black	triangles,	so	the	number	of	edges	of	the	black	triangles	is	m	+	n,	Example	7	Fig.	5.14	so	3	1n	.	Suppose	n	>	3	,	consider	the	set	E	of	2n	-	1	distinct	points	on	a	circle	.	Color	some	points	of	E	black,	and	other
vertices	no	color.	If	there	exists	at	least	a	pair	of	two	black	points	such	that	between	two	arcs	with	the	two	black	points	as	their	endpoints	we	can	find	one	of	them	whose	interior	(not	including	endpoints)	contains	exactly	n	points,	then	we	call	the	coloring	"good"	.	If	each	coloring	with	k	points	of	E	colored	black	is	good,	find	the	minimum	value	of	k.
(31	th	International	Mathematical	Olympiad)	Proof	Denote	the	points	of	E	by	V1'	V2'	•	••	,	V	2n	-1	according	to	the	anti-clockwise	direction	and	add	an	edge	between	v	i	and	v	i	+	(	n	-	J)	i	=	1,	2,	...	,	2n	-	1.	We	assume	that	V	j	+(2n	-J)k	=	Vj'	,	for	k	=	1,	2,	3,	....	Then	we	get	a	graph	G	.	The	degree	of	each	vertex	in	G	is	2	(i.e	.	every	vertex	is	adjacent	to
two	other	vertices)	and	V	i	andv	i+3	are	adjacent	to	a	common	vertex	.	Since	each	vertex	of	G	is	an	even	vertex,	G	consists	of	one	or	several	cycles.	(i)	When	3	1	(2n	-	1)	,	graph	G	consists	of	three	cycles,	the	vertex	set	of	each	cycle	is	{vi	i	i	=	3k,	k	{vii	i	=	3k	+	1,	k	=	0,	1,	...	,	2n	3-	4	}	,	{vii	i	=	3k	+	2,	k	=	0,	1,	.,.	,	2n	3-	4	}.	=	1,	2,	.	.	.	,	2n	3-	1	}	,
Graph	Theory	60	Since	the	number	of	vertices	in	each	cycle	is	2n	3-	1	•	it	is	possible	1	(2n	-	-1	-	1	)	to	choose	at	most:2	-3	=	n	-	2	vertices	.	-3and	every	two	a	f	them	are	not	adjacent	(note	that	2n	3-	1	is	odd).	So	we	may	choose	n	-	2	vertices	which	are	all	not	adjacent	pairwise.	By	the	pigeonhole	principle.	we	must	color	at	least	n	-	1	vertices	black	to
assure	that	there	is	at	least	a	pair	of	adjacent	black	vertices.	(ii)	When	3	'}	(2n	-	1).	each	vertex	of	denoted	in	the	form	of	V3k'	Vl'	V2'	.	.	.	•	V2n	-	l	can	be	So	graph	C	is	a	cycle	with	length	2n	-	1.	We	can	choose	n	-	1	nonadjacent	vertices	on	this	cycle	and	at	most	n	-	1	nonadjacent	vertices.	Hence	color	at	least	n	-	1	vertices	black	so	that	there	is	at	least
a	pair	of	adjacent	black	vertices.	In	other	words.	when	3'}	(2n	-1).	the	minimum	value	of	k	and	when	3	I	(2n	-	1).	the	minimum	value	of	k	is	n	-	1.	IS	n.	Exercise	5	1	What	is	the	value	n	when	the	complete	graph	K	n	is	a	cycle?	What	is	the	value	n	when	the	complete	graph	K"	is	a	chain?	What	are	the	values	m.	n.	when	the	complete	bipartite	graph	Kin."	is
a	cycle?	2	Suppose	graph	C	can	be	drawn	by	lifting	one's	pen	at	least	k	times.	C'	is	obtained	by	deleting	an	edge.	How	many	times	at	least	can	C'	be	drawn	by	lifting	one's	pen?	3	Determine	whether	each	of	the	Fig.	5.	15	can	be	drawn	without	lifting	one's	pen.	r	1	Fig.	5,15	Euler's	Problem	61	4	Choose	arbitrarily	n	(n	>	2)	vertices,	and	join	each	vertex
to	all	other	vertices.	Can	you	draw	these	segments	without	lifting	one's	pen,	so	that	they	join	end	to	end	and	finally	return	to	the	starting	point?	5	()	~	If	at	a	conference,	each	person	exchanges	views	with	at	least	2	persons.	Prove	that	it	is	definitely	possible	to	find	k	persons	VI	,	such	that	V	I	changes	opinion	with	V2'	V2	exchanges	views	with	V3	'	.	•	.
,	V	k	-	I	changes	opinion	with	v	k	'	and	v	k	exchanges	views	with	VI	,	where	k	is	an	integer	greater	than	O.	6	As	shown	in	Fig	.	5.16,	graph	G	has	4	vertices,	and	6	edges	.	V	2'	.	..	,	V	k	,	They	are	all	on	a	common	plane.	This	plane	is	divided	into	4	regions	I,	IT	,	ill,	N,	and	we	call	them	regions	faces.	Suppose	there	are	two	points	QI'	Q	2	on	these	faces.
Prove	that	there	is	no	line	f-t	joining	Q	I	and	Q	2	which	satisfies	:	(1)	f-t	cuts	across	each	edge	only	once;	(2)	f-t	does	not	go	through	any	vertex	v	j	(j	=	1,	2,	3,	4)	.	V,	V)	Fig.	5.	16	7	Arrange	n	vertices	V	I	'	V	2'	.	.	.	,	V	n	in	order	on	a	line.	Each	vertex	is	colored	in	red	or	blue.	If	the	ends	of	a	segment	v	i	V	i	+1	are	colored	differently,	we	call	it	a	standard
segment.	Suppose	the	colors	of	V	I	and	v	n	are	different.	Prove	that	the	number	of	the	standard	segments	is	odd.	8	Choose	some	points	on	the	edges	and	in	the	interior	of	L:,ABC.	Divide	L:,ABC	into	various	small	triangles.	Each	two	small	triangles	has	either	a	common	vertex,	or	a	common	edge,	or	no	common	vertex	at	all	.	Use	A,	B	or	C	to	label	those
vertices	in	the	interior	of	L:,ABC.	Use	A	or	B	to	label	the	vertices	on	the	edge	AB	of	the	big	triangle,	62	Graph	Theory	label	B	or	C	to	the	vertices	on	the	edge	BC	of	the	big	triangle,	and	label	C	or	A	to	the	vertices	on	the	edge	CA	of	the	big	triangle.	Prove	that	there	must	be	a	small	triangle,	whose	three	vertices	are	A,	B,	C.	9	In	the	following	figure	with
25	small	squares,	try	to	design	a	walk	starting	from	point	A,	going	through	the	edges	of	all	the	small	squares	and	finally	returning	to	A,	such	that	the	path	is	the	shortest.	Fig.	5.	17	Chapter6	Hamilton's	Problem	In	1856,	the	famous	British	mathematician	Willian	Rewan	Hamilton	brought	forward	a	game	whose	name	was"	go	around	the	world".	He
denoted	twenty	big	cities	by	twenty	vertices	of	a	regular	dodecahedron.	You	should	go	along	the	edges,	pass	through	every	city	once	and	at	last	return	to	the	starting	point.	The	game	was	welcomed	all	around	the	world.	In	this	game,	we	see	a	chain	that	it	passes	through	every	vertex	only	once.	We	call	this	chain	(cycle)	a	Hamiltonian	chain	(cycle).	If
a	graph	contains	a	Hamiltonian	cycle,	we	call	it	a	Hamiltonian	graph.	On	the	surface,	Hamilton's	problem	is	similar	to	Euler's	problem.	But,	in	fact,	they	are	different	in	nature.	Hamilton's	problem	is	one	difficult	problem	in	graph	theory	that	has	not	been	solved.	Until	now	we	can	not	find	a	necessary	and	sufficient	condition	to	characterize	it.	So	we
have	different	methods	for	different	problems.	We	shall	use	some	examples	to	illustrate.	Does	Fig.	6.1	contain	a	Hamiltonian	chain	or	a	Hamiltonian	cycle?	Solution	As	Fig.	6.	1	shows	us,	according	Example	1	2	3	to	numbers	shown	we	can	find	a	Hamiltonian	cycle.	Here	we	use	the"	direct	search"	method	to	solve	the	problem	of	"go	around	the	world".
7	Fig.	6.	1	That	is,	go	from	a	vertex	and	search	one	by	one	in	order	to	find	the	Hamiltonian	chain	(cycle).	If	we	find	one	chain,	we	have	found	one	solution.	If	not,	there	does	not	exist	a	solution	.	Graph	Theory	64	This	method	can	always	be	used	on	simpler	graphs	and	often	to	those	graphs	which	contain	a	Hamiltonian	chain	(cycle).	Example	2	In	an
international	mathematics	conference,	there	are	seven	mathematicians	come	from	different	countries.	The	language	they	can	speak	is	A:	English	B:	English	and	Chinese	C:	English,	Italian	and	Spanish	D:	Chinese	and	Japanese	E	:	German	and	Italian	F:	French,	Japanese	and	Spanish	G:	French	and	German	How	can	we	arrange	these	seven
mathematicians	round	a	table	so	that	everyone	can	talk	with	the	person	beside	him?	Solution	We	denote	the	seven	mathematicians	by	seven	vertices	A,	B,	C,	D,	E,	F,	G.	If	two	persons	can	speak	a	common	language	,	then	we	join	the	vertices	representing	them	and	we	get	a	graph	G.	As	Fig.	6	.	2	shows	us,	the	problem	of	arranging	seats	becomes	a
problem	of	finding	a	Hamiltonian	cycle.	Arrange	the	seats	in	the	order	of	the	cycle,	so	that	everyone	can	talk	with	the	person	beside	him.	A	(En)	A	B(En,	Ch)	C	(En,	1:k-~--........j..-..,,oF(Fr,	.la,	Sp)	D(Ch,	.Ia)	E	(Ge,	It)	Fig.	6.	2	E	Fig.	6.	3	Note	Ch	=	Chinese,	En	=	English,	Fr	=	French,	Ge	German,	It	=	Italian,	Ja	=	Japanese,	Sp	=	Spanish.	In	Fig.	6.	2,	we
draw	a	cycle	in	a	bold	line	and	then	we	get	our	solution,	which	also	means	if	we	arrange	the	seats	in	the	order	A,	B,	D,	F,	G,	E,	C,	everyone	can	talk	to	the	persons	beside	him.	The	Hamilton's	Problem	65	common	language	is	labelled	on	each	corresponding	edge	in	Fig.	6.	3.	Example	3	Determine	whether	the	graph	G	in	Fig	.	6.	4	contains	a	Hamiltonian
chain	or	cycle?	A	B	Fig.	6.	4	Fig.	6.	5	Solution	We	mark	one	vertex	in	graph	G	as	A.	For	example,	we	mark	the	vertex	a	as	A	and	all	the	vertices	adjacent	to	the	vertex	a	as	B	all	the	vertices	adjacent	to	B	as	A	.	Then	we	mark	the	vertices	adjacent	to	the	vertex	which	is	marked	B	as	A	and	the	vertices	adjacent	to	the	vertex	which	is	marked	A	as	B	until
we	mark	all	the	vertices.	As	Fig	.	6.	5	shows	us,	if	G	contains	a	Hamiltonian	cycle,	the	cycle	must	go	through	A	and	B	in	turn.	So	the	difference	between	the	numbers	of	A	and	B	is	no	more	than	1.	But	in	Fig.	6.	5,	there	are	nine	A	vertices	and	seven	B	vertices.	The	difference	is	2,	so	there	are	no	Hamiltonian	chain.	Generally,	to	a	higraph	G	=	(VI'	V	2	,
E),	there	is	a	simple	method	to	see	whether	the	graph	contains	a	Hamiltonian	chain	or	a	Hamiltonian	cycle.	In	a	bigraph	G	=	(VI'	V	2	,	E),	if	I	VI	10:/=1	V	2	I	,	G	must	contain	no	Hamiltonian	cycle.	If	the	difference	between	I	VI	I	and	IV	2	I	is	more	than	1,	G	must	contain	no	Hamiltonian	chain.	We	can	use	the	same	method	as	Example	3	to	prove	it.
Theorem	1	Example	4	Fig.	6.	6	shows	us	half	of	a	chessboard.	A	knight	is	at	the	bottom	right	corner.	Can	the	knight	move	along	every	square	continually	once	only?	What	happens	if	we	delete	the	black	panes	at	Fig.	6.	6	66	Graph	Theory	the	two	corners	of	the	half	chessboard?	We	consider	the	following	graph.	We	denote	the	squares	in	the	half	of	a
chessboard	by	the	vertices	of	a	graph.	If	a	knight	can	move	along	from	one	square	to	another	square	in	one	step,	we	join	the	two	vertices	representing	the	panes.	So	the	problem	Solution	becomes	a	new	problem	of	determining	whether	the	graph	contains	a	Hamiltonian	chain.	In	the	graph,	whether	the	two	vertices	are	adjacent	is	determined	by	the	.
rule	of	how	a	knight	moves.	Two	vertices	are	adjacent	if	they	are	at	the	two	ends	of	the	shape	of	letter	"L"	on	the	chessboard.	Color	a	vertex	by	the	color	of	the	square	representing	the	vertex	in	the	chessboard,	the	colors	of	the	two	adjacent	vertices	are	always	different.	So	between	the	two	adjacent	vertices	in	the	graph,	one	vertex	is	black	and	the
other	is	white	.	The	number	of	the	black	vertices	is	the	same	as	the	number	of	white	vertices,	so	there	exists	15	18	7	8	16	27	21	22	11	28	2	29	12	25	4	20	3	1	9	32	13	26	23	24	17	14	19	10	31	a	Hamiltonian	chain.	We	can	use	the	trail	and	error	to	find	a	chain.	6	5	30	Fig.	6.	7	Now	let	us	consider	the	second	part	of	the	problem	.	Again	we	use	the	above
method	to	convert	the	problem	to	determining	whether	the	graph	contains	a	Hamiltonian	chain.	The	number	of	the	black	squares	is	14	and	the	number	of	white	squares	is	16.	According	to	Theorem	1,	the	graph	contains	no	Hamiltonian	chain.	It	means	that	the	knight	cannot	move	along	every	square	continually	once	only	when	we	delete	the	black
squares.	Now	we	do	not	know	the	necessary	and	sufficient	condition	of	the	problem,	namely,	whether	a	connected	graph	contains	a	Hamiltonian	chain	(cycle).	However	many	first-class	mathematicians	have	done	some	hard	work	for	more	than	one	century,	they	have	found	some	sufficient	conditions	and	some	necessary	conditions.	In	what	follows	we
give	a	sufficient	condition	for	the	problem	whether	a	simple	graph	contains	a	Hamiltonian	chain.	Theorem	2	G	is	a	simple	graph	with	n	(n	~	3)	vertices.	For	every	Hamilton's	Problem	pair	of	vertices	v,	67	VI,	d(v)	+d(v')	~	n	-1,	then	G	contains	a	Hamiltonian	chain.	Proof	First,	we	prove	that	G	is	a	connected	graph.	Suppose	that	G	contains	two	or	more
connected	components.	Suppose	one	of	them	has	n	1	vertices,	and	another	has	n	2	vertices.	We	take	one	vertex	each,	VI	and	V2'	from	the	two	components.	Thend(vl)	j	,	it	is	always	true	that	1	<	i	-	j	<	5.	For	the	two	vertices	i	>	j,	if	i	-	j	is	in	group	A,	we	color	the	edge	ij	red;	if	i	-	j	is	in	group	B,	we	color	the	edge	ij	blue.	So	we	get	a	2-color	complete
graph	K	6.	By	Example	1,	this	K	6	contains	a	monochromatic	triangle	which	is	D,	ij	k	(i	>	j	>	k).	This	means	that	a	=	i	-	k,	b	=	i	-	j	,	c	=	J	-	k.	The	three	numbers	are	in	one	group,	and	a	-b	=	Ci	-k)	-Ci	-	j	)	=j	-	k	=c.	We	have	completed	the	proof.	Remark	In	this	example,	it	is	possible	that	b	=	c,	then	a	=	2b.	The	problem	can	be	rewritten	as	follows.	We
divide	1,	2,	3,	4,	5	into	two	groups	A,	B	randomly.	Prove	that	it	is	possible	to	find	a	number	in	a	group	so	that	it	is	twice	one	number	in	the	group	or	the	sum	of	two	numbers	in	the	same	group.	Question	8	in	Exercise	8	of	this	chapter	is	an	IMO	problem	in	1978	which	is	an	extension	or	generalization	of	this	example.	Generalize	Question	8	further,	we
get	the	famous	Schur	Theorem	(Question	7).	A	variate	of	monochromatic	triangle	is	heterochromous	triangle	whose	three	edges	are	colored	in	three	distinct	colors.	The	following	is	a	question	from	Hungarian	Mathematical	Olympiad.	Example	6	There	are	3n	+	1	persons	in	a	club.	Any	two	persons	can	play	one	of	the	three	games:	Chinese	chess,	the
game	of	go,	Chinese	checkers.	It	is	known	that	everyone	must	play	Chinese	chess	with	n	persons,	the	game	of	go	with	n	persons	and	Chinese	checkers	with	n	persons.	Prove	that	among	the	3n	+	1	persons,	there	must	be	three	persons	so	that	there	are	Chinese	chess	player,	go	player,	and	Graph	Theory	96	Chinese	checkers	player	among	the	three.
Proof	We	denote	3n	+	1	persons	by	3n	+	1	vertices.	If	two	persons	play	Chinese	chess,	the	corresponding	edge	of	them	is	colored	red.	If	two	persons	play	the	game	of	go,	the	corresponding	edge	of	them	is	colored	blue.	If	two	persons	play	Chinese	checkers,	the	corresponding	edge	of	them	is	colored	black.	Then	we	get	a	3-color	complete	graph	K
3n+1.	What	we	must	prove	is	that	in	this	3-color	complete	graph	K	3n	+	1	,	there	must	be	a	heterochromous	triangle.	If	two	edges	adjacent	to	one	vertex	are	not	monochromatic,	we	call	the	angle	of	the	two	edges	heterochromous	angle.	A	triangle	is	heterochromous	if	and	only	if	its	three	angles	are	heterochromous	angles.	Every	vertex	is	adjacent	to
3n	edges	during	which	there	are	n	red	edges,	n	blue	edges,	n	black	edges,	respectively.	Therefore,	the	number	of	the	heterochromous	angles	induced	by	one	vertex	is	(~)	n	2	The	3-color	complete	graph	K	3n+1	contains	3n	2	On	+	1)	heterochromous	angles	at	all.	On	the	other	hand,	complete	graph	3n	2.	3n	+	K	3n+1	contain	(	3	1)	21	On	+	1)	On	-1)
triangles.	We	can	regard	=	n	these	triangles	as	holes	and	heterochromous	angles	as	pigeons.	Since	3n	2	On	+	1)	>n	On	+	1)	On	-	1),	the	number	of	heterochromous	angles	in	the	3-color	complete	graph	K	3,,+1	is	twice	more	than	the	number	of	triangles.	By	the	Pigeonhole	Principle,	there	must	be	a	triangle	with	three	heterochromous	angles.	We	call
the	triangle	a	heterochromous	triangle.	We	often	find	the	similar	problems	about	the	Ramsey	problem	in	mathematics	contest.	We	give	some	more	examples	to	finish	this	chapter.	Example	7	There	are	100	guests	in	a	hall.	Everyone	of	them	knows	at	least	67	persons.	Prove	that	among	these	guests	you	can	find	4	persons	any	two	of	them	know	each
other.	(Polish	Mathematical	Competition	in	1966)	We	denote	the	guests	by	100	vertices	A1	,	A	2	,	•••	,	Awo.	Join	every	two	vertices	and	color	it	in	red	or	blue.	The	edge	joining	A;	and	Aj	is	Proof	Ramsey's	Problem	97	colored	in	red	if	and	only	if	A.	and	Aj	know	each	other.	We	use	the	language	of	graph	theory	to	re-phrase	this	problem:	In	a	red-blue
two	color	complete	graph	K	tOO'	if	the	number	of	red	edges	going	out	of	every	vertex	is	at	least	67,	then	K	IOU	contains	a	red	complete	subgraph	K	4	•	Take	one	vertex	AI.	The	number	of	red	edges	induced	by	it	is	no	less	than	67,	so	there	must	exist	a	red	edge	A	I	A	2	•	Since	the	number	of	red	edges	induced	by	A2	is	no	less	than	67,	the	number	of
blue	edges	induced	by	Al	and	A2	is	at	most	32	X	2	=	64.	They	involve	66	vertices	and	there	must	exist	one	vertex,	for	example	A3	so	that	AIA3	and	A2A	3	are	red	edges.	The	number	of	blue	edges	induced	by	AI,	A	2	,	A3	is	at	most	32	X	3	=	96	and	these	blue	edges	involve	99	vertices.	There	must	exist	one	vertex	A4	so	that	AIA4'	A	2A	4	,	A3A4	are	red
edges.	So	the	complete	subgraph	K4	with	vertices	AI,	A	2	,	A	3	,	A4	is	red.	Example	8	We	use	pentagons	AlA2A3A4AS	and	BlB2B3B4BS	as	the	top	and	bottom	faces	of	a	prism.	Every	edge	and	every	line	segment	AiBj'	where	i,	j	=	1,	2,	...	,	5,	are	colored	in	red	or	blue.	Every	triangle	which	uses	a	vertex	of	the	prism	as	its	vertex	and	a	line	segment	which
has	been	colored	as	its	edge	is	not	a	monochromatic	triangle.	Prove	that	the	ten	edges	in	the	top	and	bottom	faces	are	colored	the	same	color.	(The	21th	IMO)	Proof	First	we	prove	that	the	five	edges	on	the	top	face	are	colored	the	same	color.	Otherwise,	there	are	at	least	two	edges	in	the	pentagon	which	are	not	monochromatic.	So	there	are	two
adjacent	edges	such	as	A	I	A	2	,	AlAs	which	are	not	monochromatic.	Without	loss	of	generality,	we	suppose	that	AlA2	is	red	and	AlAs	is	blue.	Among	the	edges	joining	AI	and	B	l	,	B	2	,	B	3	,	B	4	,	Bs	there	are	at	least	3	monochromatic	edges.	Let	AIB	i	.	AIBj'	AIBk	be	red	edges	(i,	j,	k	are	distinct).	Since	6A	I	BiB	j	is	not	monochromatic,	BiB	j	is	a	blue
edge.	Similarly,	A2Bi	is	also	a	blue	edge.	We	can	also	know	that	A2B	j	is	a	red	edge.	Then	6AlA2Bj	is	a	red	triangle.	It	is	a	contradiction.	Similarly,	we	can	prove	that	the	five	edges	on	the	bottom	face	are	also	monochromatic.	If	the	edges	in	the	top	and	bottom	face	are	not	monochromatic.	98	Graph	Theory	We	suppose	that	AtA2A	3A	4A	s	is	red	and
BtB2B	3B4B	s	is	blue.	Without	loss	of	generality,	let	AtB	I	be	a	blue	edge.	By	the	assumption	that	every	triangle	is	not	monochromatic,	we	can	know	that	Al	Bs	and	AIB2	are	all	red	edges.	So	AzB	2	and	AsB	s	are	blue	edges.	Similarly,	A	sB	I'	A	sB4'	AzBI	,	A	2	B	3,	.	..	are	all	red	edges	and	A	3B	3'	A4B4	are	blue	edges.	So	A	4BI	and	A4BZ	are	blue	edges
and	we	can	get	a	blue	triangle	D	A4Bt	B	2	•	It	is	a	contradiction.	So	the	ten	edges	in	the	top	and	bottom	faces	are	monochromatic.	Example	9	10	districts.	There	are	two	international	airlines	X	and	Y	serving	For	any	two	districts,	there	is	only	one	company	providing	a	direct	flight	(to	and	fro).	Prove	that	there	must	be	a	company	which	can	provide	two
tour	routes	so	that	the	two	routes	do	not	pass	through	the	same	districts	and	each	route	passes	through	an	odd	number	of	districts.	We	denote	the	10	districts	by	10	vertices	Ut	,	U	2	'	•	.	.	,	U	IO.	If	the	flight	between	U	i	and	U	j	is	provided	by	X,	then	we	join	U	i	and	U	j	by	a	red	edge	(a	solid	line):	If	the	flight	between	U	i	and	U	j	is	provided	by	Y,	then
we	join	U	i	and	U	j	by	a	blue	edge	(a	dotted	line).	Then	we	can	get	a	2-color	complete	graph	K	10.	In	order	to	prove	the	conclusion,	it	suffices	to	prove	that	there	must	be	two	monochromatic	Proof	triangles	or	polygons	having	no	common	edge	and	an	odd	number	of	edges	in	K	10	•	The	2-color	complete	graph	K	10	contains	a	monochromatic	triangle.
Let	D	USU9U1I1	be	a	monochromatic	triangle.	By	Example	1,	we	can	know	that	the	triangles	constructed	by	the	vertices	Ut,	U2'	•	.	•	,	U	7	must	contain	a	monochromatic	triangle	.	Let	D	U	S	U	6	U	7	be	a	monochromatic	triangle.	If	the	color	of	DU	s	U	6	U	7	is	the	same	as	that	of	the	conclusion	holds.	Then	let	be	blue.	D	USU9U	tu,	D	USU9UlO	D	U	SU
6	U	7	be	red	and	The	number	of	edges	joining	the	vertex	sets	{u	s	,	U	6'	U	7}	and	{u	s	,	U	9'	U	IO}	is	3	x	3	=	9.	By	the	Pigeonhole	Principle,	there	must	be	five	monochromatic	edges	.	Let	them	be	red	edges	.	The	five	edges	are	induced	by	{us,	U9	'	U	lO}	,	so	there	must	exist	a	vertex	which	is	Ramsey's	Problem	adjacent	to	two	red	edges	which	are
U8U6,	there	must	also	be	another	red	triangle	99	U	g	U7'	As	Fig.	8.	8	shows,	DU6U7US.	Consider	the	2-color	complete	graph	Ks	whose	vertices	are	U2'	U3'	U4'	us.	If	the	Ks	contains	a	monochromatic	triangle,	whatever	color	the	triangle	is,	together	with	the	red	triangle	or	the	blue	triangle	D	U	s	U9	U	10'	K	10	contains	two	monochromatic	triangles
with	common	edge	and	the	same	color.	Otherwise,	the	2-color	complete	graph	K	s	contains	no	monochromatic	triangle.	It	IS	easy	to	know	that	Ks	contains	two	monochromatic	pentagons	which	are	one	red	and	one	blue.	We	complete	the	proof.	Remark	Ul'	D	U6	U	7	Us	".~"	U9	.~~	-	-	-	-	-	-	-	-..	:~.UIO	Fig.	8.	8	If	we	replace	10	districts	by	9	districts,	the
conclusion	is	false.	An	example	is	given	as	follows.	We	divide	9	districts	into	3	groups,	i.e.	{Ul'	Uu	U	3	'	Up	us}	=	A,	{U6'	U7'	us}	=B,	{Uy}	=	C.	The	flights	among	the	five	districts	in	A	are	provided	by	X.	The	flights	among	the	three	districts	in	B	are	provided	by	Y.	The	flights	between	A	and	B,	U	9	and	A	are	provided	by	Y:	The	flights	between	and	A
are	provided	by	X	.	Ug	Exercise	8	1	In	the	space,	there	are	six	points.	Join	every	two	of	them	and	color	the	lines	in	red	or	blue.	Prove	that	there	must	be	two	monochromatic	triangles.	2	In	the	space,	there	are	eight	points.	Join	every	two	of	them	and	color	the	lines	in	two	colors.	Prove	that	there	must	exist	three	monochromatic	lines	which	contain	no
common	point.	3	In	the	space,	there	are	six	points.	Any	three	points	are	not	the	vertices	of	an	equilateral	triangle.	Prove	that	among	these	triangles,	there	is	one	triangle	whose	shortest	side	is	also	the	longest	line	of	another	triangle.	Graph	Theory	100	4	Join	nine	distinct	points	on	a	circle	to	get	36	lines	and	color	them	in	red	or	blue.	Suppose	any
triangle	with	three	vertices	coming	from	the	nine	points	contains	a	red	line.	Prove	that	there	are	four	points	and	any	edge	joining	two	of	them	is	red.	S	Prove	that	among	any	19	persons,	there	must	be	3	persons	who	know	each	other	or	6	persons	who	do	not	know	each	other.	6	Prove	that	among	any	18	persons,	there	must	be	4	persons	who	know	each
other	or	do	not	know	each	other.	7	We	divide	the	natural	numbers	1,	2,	.	.	.	,	N	into	n	groups.	When	N	is	large	enough,	there	must	be	a	group	which	contains	x,	y	and	their	difference	1x	-	y	I.	(Schur	Theorem)	8	There	are	1978	members	in	an	international	corporation.	They	come	from	6	countries.	We	label	them	as	1,	2,	.	..	,	1978.	Prove	that	there	must
be	at	least	one	member	whose	number	is	twice	the	number	of	his	one	fellow-country	or	the	sum	of	two	fellow-countrymen.	9	Prove	that	in	a	2-color	complete	graph	K	7	'	there	must	be	two	monochromatic	triangles	with	no	common	edges.	10	In	the	space,	there	are	six	lines	.	Among	them	every	three	lines	do	not	lie	on	a	plane.	Prove	that	there	must	be
three	lines	satisfying	one	of	the	following	three	conditions:	(i)	Any	two	of	them	do	not	lie	on	a	plane	.	(ii)	Any	two	of	them	is	parallel	to	each	other.	(iii)	They	meet	at	one	point.	11	Find	the	minimum	positive	integer	n	so	that	any	given	n	irrational	numbers	always	contain	three	irrational	numbers	among	which	the	sum	of	any	two	is	also	an	irrational
number.	12	Find	the	minimum	positive	integer	n	so	that	when	the	K	is	colored	by	two	colors	arbitrarily,	there	must	be	two	monochromatic	TI	triangles	which	are	colored	by	one	color	but	contain	no	common	edges.	13	In	a	football	league,	there	are	20	football	teams.	In	the	first	round	,	they	are	divided	into	10	matches.	In	the	second	round,	they	are
also	divided	into	10	matches.	(Notice	that	the	opponent	of	every	team	in	different	rounds	can	be	the	same.	)	Prove	that	before	the	third	round,	you	can	find	10	teams	which	have	not	played	with	each	other.	Chap	ter	9	Tournament	In	Chapter	1,	we	have	said	that	the	graph	is	a	tool	to	describe	the	special	relationship	of	some	objects.	The	graph	in	the
above	chapter	is	an	undirected	graph.	The	relationship	they	describe	is	a	symmetrical	relationship.	In	daily	life,	many	relationships	are	not	symmetrical	such	as	the	relationship	of	knowing	each	other.	When	X	knows	y,	it	does	not	mean	that	Y	knows	X.	So	is	the	relationship	of	winning	or	losing	in	a	match.	So	we	can	have	a	new	definition	of	directed
graph.	We	call	a	graph	directed	graph	if	we	assign	to	every	edge	of	the	graph	a	direction.	We	call	the	edge	of	a	directed	graph	an	arc.	If	there	is	an	arc	joining	the	vertices	v	i	and	v	j	and	the	arrow	of	the	arc	points	from	v	i	to	V	j'	we	denote	it	by	(	v	i	'	V	j	)	and	call	v	i	the	starting	point	and	call	v	j	the	end	point.	Generally,	we	denote	the	directed	graph
by	D	=	(V	,	U).	Here	we	denote	the	vertex	set	of	D	by	V	and	the	arc	set	of	D	by	U.	Fig.	9.1	shows	us	a	directed	graph.	The	vertex	set	is	and	the	arc	set	is	U	=	{(v	,'	V2)'	(V	2'	V3)	'	(	vs	,	V2)	'	(vo	V2),	(	V4'	V6),	(	VS	,	V6	)'	(	VS	,	V	4),	(	V3	'	v	s	),	(	V4	'	vs	)	}	.	The	directed	graph	in	this	chapter	is	also	a	simple	directed	graph	,	which	is	a	graph	without	loops
(an	arc	which	starts	and	ends	at	the	same	point)	and	without	multi-arcs	(there	are	more	Fig.	9.	1	Graph	Theory	102	than	one	arc	joining	v	i	and	v	j	)	•	We	say	that	v	i	and	v	j	are	adjacent	if	there	is	an	arc	(v	i	'	V	j)	or	(v)'	Vi)	in	the	arc	set	of	the	directed	graph	G.	Otherwise,	we	say	that	v	i	and	v	j	are	not	adjacent.	We	call	the	number	of	the	arcs	whose
starting	points	are	v	i	an	outdegree	of	Vi'	which	is	denoted	by	d	+(v	i).	We	call	the	number	of	the	arcs	whose	end	points	are	v	i	an	indegree	of	v"	which	is	denoted	by	d-	(v	i).	We	call	a	directed	graph	tournament	graph	if	the	graph	contains	n	vertices	and	there	is	only	an	arc	joining	every	two	vertices.	We	denote	the	directed	graph	by	K"	.	Let	V1'	V2'	...	,
V	n	be	the	vertices	of	tournament	Theorem	1	Kn.	Then	d	+(V1)	+d+(V2)	d+(v	n	)	=d	-	(V1)	+d	-	(V	2	)	+"'+d-(v	n	)	=	Proof	+	...	+	1	2n(n	-1).	Since	every	arc	of	K"	induces	one	in	degree	and	one	outdegree	and	there	is	only	one	arc	joining	every	two	vertices,	the	sum	of	indegree	of	every	vertices	in	K	n	is	the	same	as	the	sum	of	outdegree	of	every
vertices.	d	+(V1)	+d+(V2)	+	...	+d	+(	v	n	)	=d	-	(V1)	+d-(V2)	+	"'+d-(v,,)	Example	1	=	1	2n(n	-1).	n	players	P	1	,	P	2	,	•••	,	P"	(n	>	1)	take	part	in	a	round	robin.	Every	player	plays	only	one	game	with	any	of	other	n	-1	players.	Suppose	that	there	is	no	tie	in	the	result	and	we	denote	the	number	of	win	and	lose	of	P	r	by	w	r	and	l	TO	respectively.	Prove
that	wf	+w~	+	···+w	;,	=n	+l~	+	···	+	l~.	(The	26th	American	Putnam	Mathematical	Competition)	Solution	Draw	a	tournament	K".	We	denote	the	person	P	r	by	Tournament	the	vertex	v	r	'	103	If	Pi	defeats	P	j	'	we	join	v	i	and	v	j	to	get	an	arc	(v	i	,	j)	.	So	W	rand	lr	are	the	indegree	and	outdegree	of	v	r	respectively.	By	Theorem	1,	V	Wl+W2	+	···+Wn
=ll+	l	2+···+	l	n.	Note	that	Wi	WT	+	w~	=	(WT	+li	=	n	+	...	+w~	-	in	+(W~	-	~	-1	C1	(iT	+l~	i	~	n),	+	...	+	l~)	-	lD	+···	+	(w~	-	l~)	=	(WI	+	ll)(wl	-ll)	+	(W	2	+l2)(W	2	-	l2)	+···	+	(w	n	+	In)(w	n	-	In)	=(n	-	1)[(wl	+W2+	···+Wn)	-	(l1	+l2+···	+	ln)J	=0.	So	wf	+W	~	+	...	+W~	In	a	directed	graph	D	=	=	(v,	u),	If	+	n	+	...	+	l~.	there	exists	a	sequence	of
distinct	arcs	U	I	'	U	2'	.	•	.	,	Un	.	If	the	starting	point	of	U	i	is	v	i	and	the	end	point	of	Ui	is	Vi+1	Ci	=	1,	2,	...	,	n).	We	call	n	the	length	of	the	directed	path.	VI	is	the	starting	point	of	the	path	and	v	n	+	I	is	the	end	point.	If	v	I	=	V	n+	1	,	we	call	the	path	a	circuit.	Example	2	The	MO	space	city	consists	of	99	space	stations.	Any	two	stations	are	connected
by	a	channel.	Among	these	channels	there	are	99	two-way	channels	and	others	are	one-way	channels.	If	four	space	stations	can	be	arrived	at	from	one	to	another,	we	call	the	set	of	four	space	stations	a	connected	four-station	group.	Design	a	scheme	for	the	space	city	so	that	we	get	the	maximum	number	of	connected	four-station	groups.	(Find	the
exact	number	and	prove	your	conclusion.)	(The	14th	China	Mathematical	Olympiad)	Solution	We	call	an	[email	protected]	four-station	group	a	bad	four-	station	group.	A	bad	four-station	group	has	three	possible	situations:	(1)	Station	A	has	three	channels	AB	,	AC,	AD	which	all	leave	A.	(2)	Station	A	has	three	channels	which	all	arrive	at	A.	(3)	Stations
A	and	B,	stations	C	and	D	have	two-way	channels	but	the	channels	AC,	AD	all	leave	A,	and	BC,	BD	all	leave	B.	We	denote	all	the	bad	four-station	groups	in	(1)	by	S	and	others	Graph	Theory	104	by	T.	Let	us	calculate	IS	I.	Since	the	space	city	contains	C;)	-	99	=	99	x	48	one-way	channels	.	We	denote	the	number	of	channels	leaving	the	i	-	th	station	by	S
i	'	So	99	~Si	99	X	48.	=	i=	1	Now	the	number	of	bad	four-station	group	in	(1)	which	contains	(~i).	three	channels	induced	by	A	is	IS	I=	99	~	1~	1	(	So	S.)~	99	x	(48)	.	I	3	3	The	above	inequality	holds	because	x	~	is	(~)	=	~	x(x	-	D(x	-	2)	for	3	is	a	convex	function	.	Since	the	number	of	all	four-station	groups	(9:),	so	the	number	of	connected	four-station
groups	is	no	more	than	Then	we	give	an	example	so	that	the	number	of	the	connected	four-station	groups	is	(9:)	-	99(~8)	.	Let	the	number	of	the	channels	from	and	to	every	station	Ai	be	both	48.	Every	station	has	two	twoway	channels	and	there	are	only	type	S	groups	of	bad	four-stations	and	no	type	T	groups	of	bad	four-stations.	We	put	99	stations
on	the	vertices	of	an	inscribed	polygon	with	99	sides	and	assume	the	longest	diagonals	of	the	regular	polygon	with	sides	all	two-way	channels.	So	every	vertex	is	adjacent	to	two	two-way	channels.	For	station	A	i	,	there	are	one-way	channels	leaving	Ai	and	joining	the	next	48	stations	in	the	clockwise	direction,	and	one-way	99	Tournament	105	channels
arriving	at	Ai	and	joining	the	next	48	stations	in	the	counterclockwise	stations.	Then	we	will	prove	there	are	only	type	S	groups	of	bad	four-station	groups	and	no	T	groups	of	bad	four-station	groups.	Suppose	{A,	B,	C,	D}	is	a	four-station	group.	(i)	If	there	are	two	two-way	channels	in	the	four-station	group,	clearly	they	are	connected.	Cii)	If	there	are
only	one	two-way	channel	AC	in	the	four-station	group,	each	of	Band	D	forms	a	cycle	with	A,	C.	Of	course,	they	are	connected.	(iii)	So	if	the	bad	four-station	group	contains	no	two-way	channel,	it	can	only	be	one	of	(1)	and	(2).	If	it	is	(2),	without	loss	of	generality,	we	suppose	that	the	3	channels	of	A	all	arrive	at	A	and	B,	C,	D	all	come	from	the	next	48
stations	of	A	in	the	clockwise	direction	.	Let	D	be	the	farthest	station	from	A.	So	AD,	BD,	CD	all	leave	from	D,	which	means	that	all	the	bad	four-station	groups	are	of	the	type	S	group.	In	summary,	there	are	at	most	C:)	-	99(~8)	connected	four-	station	groups.	Theorem	2	There	exists	a	vertex	in	a	tournament	so	that	there	is	a	path	from	it	to	any	other
vertices.	The	maximum	length	of	the	paths	is	2.	Proof	Suppose	that	the	vertex	with	the	maximum	outdegree	of	a	tournament	Kn	is	v\.	We	denote	the	end	point	set	of	the	arcs	whose	starting	point	is	V1	by	N+	(v	1).	If	the	conclusion	is	false,	there	must	be	a	vertex	V	2	(v	2	eft	v	\	),	where	v	2	tl:	N	+	(v	\	).	For	every	vertex	u	E	N+	(v	\)	,	there	is	one	arc
(V2'	u)	from	V2	to	u	together	with	the	arc	(V2'	v\)	.	So	d+	(v	2)	"?:-	d+	(v	\)	+	1,	which	contradicts	the	fact	that	degree	of	v\	is	maximum.	The	proof	is	complete.	Every	athlete	who	takes	part	in	the	single	round	robin	must	play	one	game	with	any	other	athlete	and	there	is	no	tie.	Prove	that	among	these	players,	you	can	find	such	athletes	that	the
persons	Example	3	who	were	defeated	by	him	and	the	persons	who	were	defeated	by	the	Graph	Theory	106	person	he	defeats	can	contain	all	other	athletes.	(Hungarian	mathematic	contest)	Use	tournament	on	the	round	robin,	which	is	Theorem	2.	We	omit	the	proof.	n	(n	~	Example	4	3)	athletes	take	part	in	a	single	round	robin	and	use	the	result	to
find	good	athletes.	The	requirement	that	A	is	selected	to	be	a	good	athlete	is	that	for	any	other	athlete	B,	either	A	defeats	B	or	there	exists	C	so	that	C	defeats	B	and	A	defeats	B.	If	only	one	athlete	meets	the	above	requirement,	show	that	he	defeats	any	other	athletes.	Solution	We	denote	n	athletes	by	n	vertices.	If	draw	an	arc	from	v	i	to	v	j	and	get	a
tournament	K	generality,	we	suppose	that	the	outdegree	of	according	to	Theorem	2,	that	VI	VI	VI	v	defeats	i	v	j	,	we	Without	loss	of	n.	is	maximum	in	the	K"	,	is	a	good	athlete.	What	we	will	prove	is	can	arrive	at	any	other	vertex	by	a	path	whose	length	is	1,	which	means	that	the	indegree	of	VI	is	d-	(v	I)	=	O.	Suppose	that	the	proposition	is	false.	We
denote	the	set	of	arcs	with	starting	point	VI	by	N-	(v	I)	Consider	the	K	r	consisting	of	ViI'	V	i	2	'	outdegree	of	v	i	l	is	maximum	in	K	from	v	il	to	each	of	v	i2'	•.•	,	V	ir	at	other	vertices	except	{v	i	1	at	vertices	except	ViI'	V	i	2	'	=	r.	•••	,	V	i2'	Vir.	•••	,	Vir}'	1.	By	Theorem	2,	the	length	of	path	...	,	Vi'	Vi}'	.	.	.	,	V	ir	r	~	We	suppose	that	the	is	no	more	than	2.
Since	,	Vi'	2	{v	iI'	r	1	then	VI	Vi	1	can	arrive	can	arrive	through	the	paths	whose	length	is	no	more	than	2.	Therefore,	in	the	tournament	K	r	,	Vi	I	can	arrive	at	any	other	vertex	through	a	path	whose	length	is	no	more	than	2.	Hence	ViI	is	also	a	good	athlete,	which	contradicts	the	fact	that	the	only	good	athlete.	So	N-	(V	I)	=	completed	the	proof.
Remark	0	VI	is	or	d-	(v	I)	=	O.	We	have	This	problem	gives	a	property	of	the	tournament	IL:	If	the	vertex	of	Kn	with	the	maximum	outdegree	is	unique,	then	the	outdegree	of	this	vertex	is	n	-	1.	Theorem	3	Tournament	K	n	contains	a	Hamiltonian	path	whose	Tournament	107	length	is	n	-	1.	Proof	Apply	induction	on	the	number	of	vertices	n.	When	n	=	2,
clearly	the	proposition	is	true.	~	Suppose	the	proposition	is	true	for	n	k	v	k.	When	n	=	k	+	1,	from	+	1	vertices	we	take	a	vertex	v	.	Remove	v	and	the	arcs	adjacent	to	from	R	u	1	.	By	induction,	R	k+	1	-	v	contains	a	Hamiltonian	path	VI'	If	there	is	an	arc	(v	k'	v),	then	Hamiltonian	path.	If	there	is	an	arc	is	also	a	Hamiltonian	path.	(v	,	VI'	VI)'	V2'	then	v	,
V	k'	VI'	V2'	V	IS	a	...	,	V	k	V	Otherwise	there	exist	arc	and	(VI'	v).	Then	there	must	be	an	i	C1	~	i	~	k	-	1)	so	that	the	arcs	(v;,	v),	(v,	Vi	+	I)	(v,	.•.	,	V	k)	VI	V2	v)	both	exist.	Now	VI'	.	.	.	,	v;,	v,	Fig.9.2	v;	+	l	'	.	.	.	,	V	k	is	a	Hamiltonian	path	as	Fig	.	9.	2	shows	us.	Example	5	In	a	match	of	Chinese	chess,	every	two	players	should	playa	game.	Prove	that	we
can	label	the	players	so	that	every	player	is	not	defeated	by	the	player	whose	number	follows	immediately	after	his	.	Suppose	there	are	n	players.	We	denote	n	players	by	n	Solution	vertices	VI'	V2'	arc	from	v	i	to	...	,	V	j	v".	to	get	When	(v	i'	v	V	j	).	i	is	not	defeated	by	v	j'	we	draw	an	Then	we	get	a	tournament	K".	By	Theorem	3	,	K"	contains	a
Hamiltonian	path,	so	we	can	label	them	according	to	the	order	of	the	path.	Theorem	4	The	tournament	K"	(n	;?-3)	contains	a	circuit	which	is	a	triangle,	if	and	only	if	there	are	two	vertices	v	and	v'	satisfying	Proof	Let	vertices	v	and	v'	satisfy	d+	(v)	d+	(v').	We	will	prove	that	K"	contains	a	circuit	which	is	a	triangle.	Without	loss	of	generality,	we	assume
that	there	is	an	arc	(	v	,	v')	Graph	Theory	108	and	draw	arcs	from	V'to	everyone	of	d+	(v)).	Then	there	must	be	Vj	to	v.	Otherwise,	d+	V	j	C1	(v)	~	k	VI'	~	j	~	k)	+1	>	V2'	...	,	V	k	where	(k	=	so	that	there	is	an	arc	from	d+	(v')	and	v,	v',	V	j	form	a	triangle	.	We	have	proved	the	sufficient	condition	.	If	the	outdegree	of	every	vertex	of	K	n	is	different,	we
can	prove	by	induction	that	K	n	contains	no	triangular	circuit.	When	n	=	3,	it	is	easy	to	see	that	the	outdegree	of	a	triangle	is	0,	1,	2	and	the	triangle	cannot	form	a	circuit.	Suppose	the	proposition	is	true	for	n	=	k.	Consider	the	tournament	K	n	+I	'	If	the	outdegree	of	every	vertex	is	different,	they	are	0,	1,	2,	"',	k	in	order.	Supposed+(v	'	)	=	k.	Remove
the	vertex	v'	and	its	adjacent	arcs.	By	induction	hypothesis,	circuit.	Clearly	K	k+1	Kk	-	v'	contains	no	triangular	contains	no	triangular	circuit.	We	have	proved	the	necessary	condition.	Exercise	9	1	Among	n	(n	>	4)	cities,	every	two	cities	have	a	path	to	join	them.	Prove	that	we	can	change	these	paths	to	one-way	path	so	that	it	is	possible	to	go	from	one
city	to	another	city	through	at	most	one	other	city.	2	If	a	tournament	K	trianglular	circuit.	3	n	contains	a	circuit,	then	K	n	contains	a	In	a	country,	N	cities	are	connected	by	air	routes.	For	any	route,	the	airplanes	can	fly	only	along	one	direction.	An	air	route	satisfies	the	condition	f:	Any	plane	which	starts	from	one	city	cannot	return	to	the	same	city.
Prove	that	it	is	possible	to	design	an	airline	system	so	that	every	two	cities	are	connected	by	an	air	route	and	the	system	also	satisfies	condition	f.	4	In	a	volleyball	round	robin,	if	team	A	defeats	team	B	or	team	A	defeats	team	C	and	team	C	defeats	team	B,	we	say	that	A	is	Tournament	109	superior	to	B	and	we	also	call	the	team	superior	to	any	other
team	the	champion.	According	to	this	regulation,	can	two	teams	both	win	the	championship?	5	n	players	take	part	in	a	match	in	which	everyone	plays	with	several	other	players.	Suppose	that	there	is	no	tie	in	a	game	.	If	the	result	that	VI	defeats	V2'	V2	defeats	V	3	'	.	.	.	,	V	k	defeats	VI	does	not	appear.	Prove	that	there	must	be	a	player	who	wins	all
games	and	another	player	who	loses	all	games.	6	If	among	n	persons	v	I	'	V2'	.	.	•	,	V	n	every	two	persons	v	i	and	v	j	have	one	ancestry	v	k.	Everyone	can	be	an	ancestry	of	oneself.	Prove	that	the	n	persons	have	a	common	ancestry.	7	A,	B,	C,	D	play	table	tennis	and	every	two	persons	should	play	against	each	other.	At	last,	A	defeats	D	and	A,	B	,	C	win
the	same	number	of	games.	How	many	games	does	C	win?	:;?o	3)	players	take	part	in	a	round	robin.	Every	pair	should	playa	game	and	there	is	no	tie	.	There	is	no	player	who	defeats	all	other	players.	Prove	that	among	them	there	must	be	three	persons	A	,	8	n	(n	B,	C	so	that	A	defeats	B,	B	defeats	C	and	C	defeats	A.	9	There	are	100	species	of	insects.
Among	every	two	of	them	there	is	one	species	who	can	eliminate	another	species.	(But	A	eliminates	B,	B	eliminates	C,	which	does	not	mean	that	A	eliminates	C	.	)	Prove	that	the	100	species	of	insects	can	be	arranged	in	an	order	so	that	any	species	can	perish	another	species	next	to	it.	Solutions	1.	Consider	a	complete	m-partite	graph	G'	,	the	number
of	vertices	of	its	m	parts	is	nl	,	n	2'	.	..	,	n	i	-	1,	.	..	,	n	j	+	1	,	.	..	,	n	m	Since	•	e	CG	/	)	1	+2	(n	-	n	J	-	1)(n	J	+	1)	=	eCG)	+	(n	i-	n	j	)	-	1	>	eCG)	.	If	G'	is	isomorphic	to	T	m	(n	),	we	complete	the	proof.	Otherwise,	repeat	the	above	step	until	we	find	a	graph	which	is	isomorphic	to	T	m	.	n	'	6	Construct	a	bigraph	G	=	CX,	Y	;	E)	as	follows.	We	denote	every
student	from	country	X	by	a	vertex	in	X	and	every	student	from	country	Y	by	a	vertex	in	Y.	If	a	student	from	X	has	danced	with	a	student	from	y,	then	join	the	vertices	corresponding	to	them.	Suppose	that	the	degree	of	x	is	the	largest	in	X.	Since	d	(	x	)	<	n,	in	y,	there	is	a	vertex	y'	which	is	not	adjacent	to	x.	Suppose	that	x	'	in	X	is	adjacent	to	y	'	.	Since
except	y',	there	are	d	(	x	')	-	1	vertices	adjacent	to	x'	and	de	x	/)	-	1	~	de	x	)	-	1	<	de	x	),	so	there	must	be	a	vertex	y	which	is	adjacent	to	x	but	not	adjacent	to	x	'	.	Then	we	get	four	vertices	x	,	x	'	,	y,	y'	corresponding	to	four	persons	who	satisfy	the	requirement.	7	Construct	a	graph	G	as	follows.	We	denote	14	persons	by	14	vertices	.	Two	vertices	are
adjacent	if	and	only	if	these	two	corresponding	persons	have	not	cooperated	.	By	assumption,	there	are	C24)	=	91	pairs	among	14	persons	.	Everyone	has	teamed	up	with	the	14	X	5	other	5	persons,	so	there	are	-	2-	=	35	pairs.	Now	they	play	3	sets	and	have	6	new	pairs	.	The	number	of	edges	of	G	is	91	-	35	-	6	but	e2	(14)	=	=	50	,	49.	By	Tunln's
theorem,	G	contains	K	3	and	the	travelers	Graph	Theory	120	corresponding	to	three	vertices	can	playa	set	with	the	new	traveler.	8	SetG	=	(V,	E).	There	ared(x){n	-1	-	d(x)}	triple	group	{x,	y,	z}.	They	do	not	form	a	triangle	in	G	or	G,	and	x	E	V	is	the	end	of	the	only	edge	in	G.	Every	triple	group	{x,	y,	z}	which	does	not	form	a	triangle	in	G	or	G	contains
one	or	two	edges	of	G.	Suppose	that	(x,	y)	is	one	edge	of	G	and	(x,	z),	(y,	z)	are	two	edges	of	G.	In	the	sum	~d(x){n	-1	-d(x)},	the	triple	group	{x,	y,	z}	has	rEV	been	counted	twice:	one	is	about	x,	the	other	is	about	y.	If	(x,	y),	(y,	z)	are	the	edge	of	G,	(x,	z)	is	the	edge	of	G,	in	above	sum,	the	tuple	group	{x,	y,	z}	has	also	been	counted	twice:	one	involves
x,	the	other	involves	z.	The	sum	of	triangles	in	G	and	G	is	G)-	~	~rEvd(x)(n	=	-1	-	d(x»	1	24n(n	-D(n	-	5).	9	Suppose	there	is	no	(k	+	1)	-element	set	which	we	need.	We	will	prove	m	<	-'-(k'-'-----~1)'_(~n'_-----.:..:k'_'_)_+_'_____'_=k	(	k2	n	)	k	-	1	.	We	denote	all	the	red	k	-subsets	by	S	and	all	the	(k	-	1)	-subset	by	f3	.	For	any	(k	-	1)	-subset	B,	we	denote	the
number	of	red	k	-element	subsets	which	contain	B	by	a	(B).	For	any	A	E	S,	A	contains	k	(k	1)-element	subsets.	For	any	element	x	E	X\A,	x	together	with	at	most	k	-	1	of	k	(k	-	1)	-element	subsets	form	a	red	k	-element	subset.	(	Otherwise,	there	exists	(k	+	1)	-element	subset	and	all	its	k	-element	subsets	are	red	k	-element	subsets.	)	So	~	BcA,	IBI=	k-l	So
a(B)«n	-	k)(k-1)+k.	Solutions	m	[	Cn	-	k)Ck	-	1)	121	+	k]	~	~	~	aCB)	A	E	SB	C	A.	IB	I	~	k	-	l	=	~CaCB»2	B	E	{3	~	m((;{3aCB»)	2	~	1	-	--Ckm)2.	(k	~	1)	So	~	m	----,	[Cn	-	k)(k	-	n	+	k](	n	)	_	_	__	_	~_	_~k~-_1~	k2	Since	[Cn	-	k)Ck	-	n	+	k](	m	n	)	>	_	____~~--_k---1k2	there	must	exist	a	Ck	+	1)	-element	subset	of	X	such	that	all	k-element	subsets	are	red	k-
element	subsets.	10	Since	C20	)	=	45,	then	a	complete	graph	with	10	vertices	contains	45	edges	.	The	figure	in	the	problem	is	obtained	by	removing	5	edges	from	the	complete	graph	with	10	vertices.	We	call	the	5	edges	"Removed	Edges"	and	denote	10	vertices	by	A	l	'	A	2'	.	.	.	,	A	10	.	Without	loss	of	generality,	let	A	1	A2	be	a	"Removed	Edge",	then
remove	Al	and	its	incident	edges.	The	deduced	graph	with	9	vertices	contains	at	most	4	"Removed	Edges".	Without	loss	of	generality,	let	A2A	3	be	a	"Removed	Edge".	Then	remove	A2	and	its	incident	edges.	CIf	there	is	no	"Removed	Edge",	remove	any	vertex	.	The	same	in	the	later	step.)	The	deduced	graph	with	8	vertices	contains	at	most	3	"Removed
Edges".	Without	loss	of	generality,	let	A3A4	be	a	"Removed	Edge".	Then	remove	A3	and	its	incident	edges.	The	deduced	graph	with	7	vertices	contains	at	most	2	"Removed	Edges".	Graph	Theory	122	Without	loss	of	generality,	let	A4AS	be	a	"Removed	Edge".	Then	remove	A4	and	its	incident	edges.	The	deduced	graph	with	6	vertices	contains	at	most
1"Removed	Edge".	The	deduced	graph	is	a	complete	graph	with	6	vertices	or	the	graph	which	is	obtained	by	removing	one	edge	from	the	complete	graph	with	6	vertices.	Anyway,	the	graph	must	contain	a	complete	bipartite	graph	K	3	,	3	.	We	can	generalize	this	problem:	If	a	graph	with	n	vertices	and	m	edges	contains	no	K	can	prove	that	m	11	X2'	<
n,	n'	C	•	n	2--;'	,	where	C	depends	on	r.	We	denote	the	positions	of	18	police	cars	by	18	vertices	...	,	X	lS	.	We	Xl'	Suppose	By	Theorem	3,	I	E	I?	(	18)	2	-	[182J	3	=	45.	It	means	there	are	at	least	45	pairs	of	cars	which	can	communicate	with	each	other.	If	the	above	condition	of	the	graph	does	not	hold,	then	there	does	not	exist	two	vertices	whose
degrees	are	more	than	5	and	I	E	I~	~	(1	X	17	+	4	X	17)	<	43,	a	contradiction.	12	When	n	=	2,	n	2	+	1	=	5.	There	are	5	line	segments	among	4	vertices,	which	form	two	triangles	.	Suppose	that	proposition	is	true	for	n	=	k.	When	n	=	k	+	1,	let	us	prove	that	there	exists	at	least	one	triangle	.	Suppose	that	AB	is	a	given	line	segment	and	denote	the
number	of	line	segments	from	A	and	B	to	other	2k	points	by	a	and	b.	?	2k	+	1	,	there	exists	a	vertex	C	other	than	A	and	B	so	that	AC	and	BC	exist.	Then	there	exists	a	triangle	L:,.ABC.	(2)	If	a	+	b	~2k,	if	we	remove	A	and	B,	among	the	remaining	2k	vertices,	there	exist	at	least	k	2	+	1	line	segments.	By	induction,	there	exists	a	triangle.	(	1)	If	a	+b
Suppose	L:,.ABC	is	a	triangle	formed	by	these	line	segments.	We	Solutions	123	denote	the	number	of	line	segments	from	A,	Band	C	to	other	2k	-	1	points	by	a,	(3	and	y.	(3)	If	a	+	(3	+	y	~	3k	-	1,	the	total	number	of	the	triangles	including	one	of	AB,	BC,	CA	as	an	edge	is	at	least	k	.	These	k	triangles	together	with	L"ABC	give	k	+	1	triangles.	(4)	If	a	+	(3
+	Y	~	3k	-	2,	there	is	at	least	one	number	which	is	no	more	than	2k	-	2	among	the	three	numbers	a	+(3,	(3	+	y,	y	+	a.	Without	loss	of	generality,	a	+(3	~	2k	-	2.	When	we	remove	two	vertices	A,	B,	among	the	remaining	2k	vertices	there	exist	at	least	k	2	+	1	line	segments.	By	induction,	there	exist	at	least	k	triangles.	These	k	triangles	together	with
L"ABC	give	k	+	1	triangles.	The	proposition	is	true	when	n	=	k	+	1.	We	complete	the	proof	by	induction.	Exercise	4	1	The	spanning	tree	of	graph	G	contains	two	pendant	vertices.	Remove	these	two	vertices	and	the	graph	is	still	connected.	There	are	9	2	X	9	81	vertices	whose	degrees	are	4,	so	we	should	=	remove	at	least	[821	]	+	1	=	41	edges	so	that
the	degree	of	every	vertex	is	less	than	4	.	We	can	remove	at	most	2	X	11	X	10	-	120	=	100	edges	so	that	the	graph	is	still	connected.	3	The	proposition	is	not	true.	Take	K	3	and	an	isolated	vertex	(the	vertex	which	is	not	adjacent	to	any	other	vertex)	to	construct	a	graph	G.	Then	G	contains	4	vertices	and	3	edges,	so	it	is	not	connected	and	clearly	not	a
tree.	4	(1)	Suppose	that	T	has	x	pendant	vertices.	The	number	of	vertices	of	the	tree	T	is	n	=	3	+	1	+	x,	the	edge	number	is	e	=	n	-	1	=	11	X	2:	d	(v,)	+	3.	=	3	X3	+2	Xl	+1Xx	=	11	+	x,	so	11	+	x	=	2(x	+	i=	l	3),	x	=	5.	(2)	Fig.	4	shows	us	two	trees	satisfying	the	requirement	but	they	are	not	isomorphic.	Graph	Theory	124	Fig.	4	5	Suppose	T	contains	n
vertices	and	e	edges.	Then	n	e	=	n	-	1,	k	k	~	in	i	2e	=	=	2n	-	2	=	2~	n	i	-	2.	i=	1	i=	1	So	k	nl	~(i	-	2)n	i	+2.	=	i=	2	For	r	6	~	3,	by	the	above	equality,	we	can	obtain	Among	d	l	'	d	2'	equal	to	1.	(Otherwise,	...	,	t	di	d	n'	there	must	be	at	least	two	which	is	~	2n	-	1).	We	apply	induction	on	the	i	=l	number	of	vertices	n	.	When	n	=	2,	the	proposition	is	true.
Suppose	that	the	conclusion	is	true	when	n	=	k	.	When	n	=	k	+	1,	there	exists	a	number	1	among	d	1	,	d	2	,	•••	,	d	k	,	d	k	+	1	•	Without	loss	of	generality,	let	d	k	+	l	=	1.	It	is	easy	to	know	among	the	k	+	1	numbers	there	exists	a	number	which	is	no	less	than	2,	denoted	by	d	k.	Consider	the	k	numbersd	1	,	d	2	,	•••	,dk-l	,	(d	k	-	1),	d	1	+	..	·+dk-l	+	(d	k	-
1)	=	2(k	+	1)	-	2	-	1	-	1	=	2k	-	2.	By	induction,	there	exists	tree	T'	whose	vertices	are	VI'	••.	,	V	k	,	k	~d(Vi)	=	d	1	+	...	+d	k	-	1	+	(d	k	-	1)	=	2k	-	2.	i=1	In	T',	there	is	an	edge	which	is	from	Vk	to	Vk	+	l	'	We	obtain	a	tree	125	Solutions	T,	then	k+1	~d(v;)	=	2k	-2	+1	+	1	=	2(k	+	1)	-	2.	i=	l	T	is	what	we	need.	7	Construct	a	graph	G,	we	use	the	ends	of	n
line	segments	as	the	vertices	of	G	and	the	line	segments	as	the	edges.	By	the	condition,	G	is	connected	and	contains	no	loop.	So	G	is	a	tree	where	the	length	of	its	longest	chain	is	2.	So	G	contains	only	one	vertex	which	is	not	a	pendant	vertex.	The	vertex	is	the	common	vertex	of	n	line	segments.	8	Refer	to	Example	6	in	this	chapter.	9	Suppose	the
conclusion	is	not	true,	then	there	must	exist	a	counterexample.	Consider	the	counterexample	in	which	the	smallest.	In	this	counterexample,	1E	1=	1V	1+	4.	1E	1+1	A	contradiction!)	Then	1E	1>	1V	I.	1is	(Otherwise,	we	can	remove	more	edges	and	still	get	a	counterexample,	where	1V	1is	smaller.	V	1	E	1	+	The	graph	must	contain	a	cycle.	The	length
of	the	shortest	cycle	is	at	least	5.	(Otherwise,	the	length	of	the	shortest	cycle	is	no	more	than	4,	then	we	remove	this	cycle.	We	still	have	1E	1;;:	1V	I.	There	still	exists	a	cycle.	The	cycle	and	the	above	cycle	contain	a	common	edge.	A	contradiction!	)	Furthermore,	the	degree	of	every	vertex	is	at	least	3.	Otherwise,	if	the	degree	of	a	vertex	is	2,	remove
this	vertex	and	change	the	two	edges	adjacent	to	this	vertex	to	one	edge.	We	still	have	1E	4	and	1E	1+	1V	1gets	1=	1V	1	+	smaller.	A	contradiction!	If	the	degree	of	one	vertex	is	1,	remove	this	vertex	and	its	adjacent	edges,	we	still	have	1E	1=	1V	1+4	and	1E	1+1	V	1is	smaller.	A	contradiction!	If	there	exists	an	isolated	vertex,	remove	it	and	1	V	1	1E
I	>	1V	1+	4	and	1E	1+	is	smaller.	A	contradiction!	Take	a	cycle	Co,	the	length	of	which	is	at	least	5.	The	cycle	contains	at	least	5	vertices.	For	every	vertex	on	the	Co,	it	is	adjacent	to	at	least	one	edge	which	is	not	on	the	cycle	and	the	adjacent	vertices	are	distinct.	(Otherwise,	there	exists	a	cycle	whose	length	is	less	than	5.	)	Then	it	is	easy	to	see	1	V	I
;;:	2	X	5	=	10.	Graph	Theory	126	On	the	other	hand,	2	1	E	1	=	~d	(V)	>	~3	=	3	v	EV	4,	so	2	1	V	1	+	8	;;:,	3	1	VI,	1	V	I.	1	E	1	=	1V	1	+	v	EV	1	V	1	~	8.	A	contradiction!	Such	counterexample	does	not	exist.	We	have	proven	the	proposition.	Remark	The	method	of	proof	in	this	problem	is	the	proof	by	contradiction.	To	prove	that	the	proposition	is	true,	we
assume	that	the	proposition	is	false.	Consider	a	variable	V	E	N.	From	the	smallest	counterexample	of	V	we	can	deduce	a	contradiction	and	the	proof	becomes	easier	using	this	condition.	The	conclusion	of	this	problem	is	the	best.	When	1	E	1	=	1	V	1	+	3,	we	can	give	a	counterexample	as	Fig.	5	shows	us.	10	Fig.	5	We	denote	21	persons	by	21	vertices.
There	is	an	edge	joining	two	vertices	if	and	only	if	the	two	delegates	which	are	represented	by	the	two	vertices	have	called	each	other.	By	assumption,	there	exists	an	odd	cycle	whose	length	is	m.	(We	call	cycle	whose	length	is	odd	cycle.	)	Let	C	be	the	smallest	odd	cycle	in	the	graph,	the	length	of	which	is	2k	+	1.	1	,	let	C	be	a	triangle.	It	means	the
three	persons	have	made	a	phone	call	to	each	other.	Vj.	that	If	k	=	If	k	>	1,	set	C	and	there	is	no	edge	joining	Vi	and	+1,	i	-	j	*±1	(mod2k	+1).	)	Otherwise,	suppose	(1	~	i,	j	~2k	Vi'	Vj	Vl	V2	•	.•	V2k+l	Vl	are	adjacent	and	the	sum	of	the	length	of	cycle	Vl	V2	•	••	V2k+l	Vl	and	that	of	the	cycle	ViVi+l	•	.	.	VjVi	is	2k	+	3.	So	among	them	there	must	be	an
odd	cycle	whose	length	is	less	than	2k	+	1.	It	V	iV	j	•••	contradicts	the	fact	that	C	is	the	shortest.	Suppose	there	is	no	triangle	among	the	21	-	(2k	vertices	other	than	at	least	(10	-	k)2	Vl'	V2'	•••	,	V2k+l.	+	1)	=	20	-	2k	By	Turan's	theorem,	there	are	edges	joining	them.	Any	vertex	among	them	is	not	adjacent	to	two	vertices	which	are	adjacent	to	C,	so	it
is	adjacent	to	at	most	k	vertices.	So	the	sum	of	the	edges	is:	Solutions	=	+	1	+	H20	-	2k)	+	00	100	+	2k	+	1	-	k	=	102	-	~	102	-	(2	_	1)2	2k	127	k)2	2	(k	-	1)	2	=	101.	A	contradiction!	So	the	graph	must	contain	a	triangle,	which	means	there	exist	three	persons	who	have	called	each	other.	11	Suppose	there	exists	such	a	graph	that	the	degree	of	every
vertex	is	more	than	2.	But	the	length	of	any	cycle	of	the	graph	is	divisible	by	3.	We	consider	the	graph	G	which	has	this	property	and	the	least	number	of	vertices.	Clearly	,	the	graph	contains	the	shortest	circle	Z.	The	non-adjacent	vertices	on	this	cycle	are	not	joined	by	an	edge.	Since	the	degree	of	every	vertex	is	more	than	2,	every	vertex	on	the	cycle
Z	is	adjacent	to	one	vertex	not	on	the	cycle	.	Let	Z	pass	the	vertex	A	1	,	A	2	'	••.	,	A	3k	.	Suppose	that	there	exists	a	path	5	which	joins	the	vertices	A	m	and	A	"	and	which	does	not	include	edges	in	Z.	We	consider	the	cycle	Z	1	and	Z	z	consisting	of	the	two	halves	of	5	and	Z.	Since	the	length	of	each	of	the	two	cycle	is	divisible	by	3,	it	is	not	difficult	to



see	the	length	of	path	5	is	divisible	by	3.	Especially,	for	the	given	graph	,	we	can	know	that	any	vertex	X	which	is	not	on	the	circle	Z	cannot	have	edges	incident	to	two	distinct	vertices	of	Z.	It	means	that	the	edges	which	are	induced	by	the	vertices	on	Z	but	not	on	the	cycle	should	be	incident	to	distinct	vertices,	respectively.	Let	us	construct	a	graph	G
1	•	Collapse	all	vertices	A	1	,	A	z	,	...	,	A	3k	on	the	cycle	Z	of	G	into	one	vertex	A	and	keep	all	the	vertices	which	are	not	on	the	cycle	and	their	incident	edges.	Join	the	A	and	the	vertices	on	the	Z	one	by	one.	It	is	easy	to	know	the	degree	of	A	is	no	less	than	3k.	The	number	of	vertices	in	G	1	is	less	than	that	of	G	and	the	degree	of	every	vertex	is	still
more	than	2.	According	to	above	conclusion	,	the	length	of	any	cycle	in	G	is	divisible	by	3.	We	arrive	at	a	contradiction	.	In	view	of	the	above	proof,	we	can	know	G	is	the	Graph	Theory	128	graph	satisfying	these	properties	and	with	the	least	vertices.	Then	in	a	graph	the	degrees	of	its	vertices	are	all	more	than	2,	there	must	exist	a	cycle	whose	length
can	be	divided	by	3.	Then	we	only	need	to	apply	this	assertion	to	our	problem.	We	denote	the	city	by	a	vertex	and	the	path	by	the	edge.	Exercise	5	1	When	n	en	~	2)	is	odd,	K"	is	a	cycle.	When	n	=	2,	K	2	is	a	chain.	When	m,	n	are	both	even,	K	m	."	is	a	cycle.	2	Suppose	G	contains	at	least	2k	odd	vertices.	Delete	one	edge	to	get	G'.	There	are	three	cases:
e1)	The	number	of	odd	vertices	of	G'	decreases	by	2,	then	G'	need	at	least	k	-	1	strokes	to	draw.	(2)	The	number	of	odd	vertices	increases	by	2,	G'	need	at	least	k	+	1	strokes	to	draw.	(3)	The	number	of	odd	vertices	does	not	change,	G'	need	at	least	k	strokes	to	draw.	3	These	two	graphs	are	all	unicursal,	that	is,	they	can	be	drawn	in	one	strock,	and
start	and	end	at	the	same	vertex.	4	When	n	is	odd,	the	graph	is	unicursal;	when	n	IS	even,	the	graph	is	not	unicursal.	5	Draw	G	as	follows.	We	denote	the	persons	by	vertices.	If	two	person	have	exchanged	views,	then	join	the	corresponding	vertices.	Take	the	longest	chain	1-'-'	Let	Vl	be	an	end	of	1-'-'	then	()	vertices	V2'	•••	,	VS+l	adjacent	to	Vl	are	all
on	the	chain	1-'-'	Otherwise,	I-'-	can	still	be	extended.	Go	along	the	I-'-	through	vertices	V2'	V3'	•.	•	,	VS+l'	and	then	return	to	v	1	.	This	is	a	cycle	whose	length	is	more	than	().	v;	6	Take	a	point	(j	=	1,	2,	3,	4)	on	every	face.	If	the	two	faces	have	common	edges,	join	the	two	points.	Then	we	get	a	new	graph	G	*	which	we	call	the	dual	graph	of	G.	In	the
graph	G,	going	from	a	face	to	another	face	through	the	edge	e	i	is	equivalent	to	going	from	one	vertex	to	another	vertex	along	an	edge	in	the	G	*.	Therefore,	if	G	v;	Vj	Fig.	6	Solutions	129	contains	a	broken	line	f1	satisfying	conditions	(1)	and	(2),	then	G	'	is	a	chain	(Q1	and	Q2	are	not	on	a	face)	or	a	cycle	(Q1	and	Q	2	are	on	a	face),	i.	e.	the	graph	G	'	is
unicursal	or	it	can	be	drawn	in	one	strock.	But	if	the	four	vertices	of	G	*	are	all	odd,	the	graph	G'	needs	two	strocks	to	draw.	7	Suppose	that	there	are	k	lines	and	that	one	vertex	corresponds	to	one	number	ai	=	1;	Vi	ai	in	the	following	way.	If	is	blue,	thenai	=-1,	i	=	1,2,	...	,	n.	V	i	is	red,	then	Vi	Then	hence	k	is	odd.	8	A	___	1!"	__	Series:	Mathematical
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